Horizontal well drilling and hydraulic fracturing have been widely applied to enhance the shale oil production in the Bakken Formation. Previous research for Bakken Formation primarily focused on reservoir characterization, hydraulic fracturing treatments, and well completion design. However, few studies have been done on the simulation of hydraulic fracture propagation under real Bakken Formation's mechanical properties and field stresses. The objective of this study was to investigate numerically the effects of the in-situ stresses and formation properties on the geometry and pressure of hydraulic fracture. A fully coupled lattice model, based on the distinct element method (DEM) and synthetic rock mass (SRM), was used for the simulations. XSite, a new, lattice-based software by Itasca was used in this study. The model input data was taken from 1D mechanical earth models (MEM) built and the results of lab test on 240 core samples acquired from eight wells drilled into Upper, Lower and Middle Bakken. The results indicated that the hydraulic fracture which is initiated at the center of the Middle Bakken Formation can penetrate into both the Upper and Lower Bakken formations due to the high Young's modulus of both formations. Sensitivity analyses of the formation properties and in-situ stresses on hydraulic fracture propagation were carried out.
Skip Nav Destination
Lattice Simulation of Fracture Propagation in the Bakken Formation
B. Damjanac
B. Damjanac
Itasca Consulting Group
Search for other works by this author on:
Paper presented at the 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York City, New York, June 2019.
Paper Number:
ARMA-2019-0250
Published:
June 23 2019
Citation
Badrouchi, F., Wan, X., Bouchakour, I., Akash, O., Rasouli, V., and B. Damjanac. "Lattice Simulation of Fracture Propagation in the Bakken Formation." Paper presented at the 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York City, New York, June 2019.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Pay-Per-View Access
$20.00
Advertisement
29
Views
0
Citations
Advertisement
Suggested Reading
Advertisement