Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Peer Reviewed
Format
Subjects
Article Type
Date
Availability
1-2 of 2
Keywords: ofwt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Paper presented at the The 29th International Ocean and Polar Engineering Conference, June 16–21, 2019
Paper Number: ISOPE-I-19-031
... ABSTRACT Unlike the bottom-fixed wind turbines, the aerodynamic performance of the offshore floating wind turbines (OFWTs) are affected by platform-induced motion on wave. The related studies are essential for accurate prediction of loads on OFWTs. However, few studies had been done...
Proceedings Papers
Paper presented at the The Twenty-fourth International Ocean and Polar Engineering Conference, June 15–20, 2014
Paper Number: ISOPE-I-14-181
... Abstract In the paper, a coupled aero-hydrodynamic simulation tool in MATLAB/Simulink is developed for simulating the response and performance of offshore floating wind turbines (OFWTs) under wind and waves in the time domain. For aerodynamics, an unsteady blade element momentum (BEM) model...