Abstract
In this study, a collision risk model was developed, based on gas model theory and Pedersen's collision and grounding mechanics. Busan north port was chosen as the area of assessment and, was divided into equal cells. Geometrical collision risk, both ship-ship and ship-structure, within each cell was analyzed following a probabilistic quantification. Moreover, bathymetry data of the port waters were analyzed to assess grounding risks. Results were plotted on Google EarthTM to identify the highest risk point and region within the area of assessment to aid safe maneuvering of vessels.
Introduction
With the recent trends and advancements in maritime world, emergence of new ships is inescapable and consequently, maritime traffic density has continued to expand. Increased number of ships, as well as bigger ships in narrow passages attribute to higher volumes of traffic in already congested waterways and particularly, in port areas. This, in turn, makes ship maneuvering more difficult and complicated. Moreover, higher maritime traffic can increase the risk of collision accidents with unfavorable consequences. Although some major technological advancements such as ECDIS (Electronic Chart Display and Information System), ARPA (Automatic Radar Plotting Aids), GNSS (Global Navigation Satellite System) and GMDSS (Global Maritime Distress & Safety System) are successfully integrated with navigation, port and harbor areas are still more susceptible to collision accidents. Thus, evaluating the risk of collision has become an integral part in maneuvering supporting systems to improve safety in navigation by decreasing the risk of collision.
Collision risk in navigation is often misread due to the rarity of disastrous, individual accidents. Ylitalo (2010) discovered that the probability of an accident in a particular area would not be zero, although there is less or no records of previous incidents. Even though the probability of a direct ship-ship collision is very small, a minor incident can have unfavorable consequences, which can lead to loss of property as well as life at sea. Therefore, all risks in navigation have to be taken seriously. Identifying the risk areas, therefore, is vital to minimize and to avoid accidents. Once the risk areas are clearly identified, measures such as emergency planning can be taken for safe maneuvering of ships.