The paper proposes an innovative methodology of Human Cognitive Reliability- Cognitive Reliability and Error Analysis Method (HCR-CREAM) coupled with A* search and genetic algorithm (GA) to tackle ship cabin equipment layout considering human factor reliability optimization with the goal of minimizing human error probability (HEP) subjected to practical requirements. After establishing the mathematical model of cabin equipment inspection tasks in ship cabin equipment layout problem through HCR-CREAM and equipment geometric simplification, a method of the horizontal movement based on minimum distance is presented to avoid the equipment overlapping, then A* search is used for planning inspection paths and GA with selection, crossover, and mutation operators is applied to solve equipment layout results. A case of equipment layout in a certain ship engine room has been taken to carry out parameter sampling experiments by Latin Hypercube for GA. The results show the solution effect of GA is less affected by its parameter variation. And through the comparison with the initial equipment layout, the indicators influencing the HEP of the optimized result have been improved, thus significantly reducing HEP.


ship cabin equipment layout; human factor reliability optimization; HCRCREAM; A* search; genetic algorithm

This content is only available via PDF.
You can access this article if you purchase or spend a download.