In-situ combustion (ISC) is a promising thermal enhanced oil recovery method with benefits for deep reservoirs, potentially lesser energy requirements as compared to steam injection, and low opportunity cost. Although successful ISC projects have been developed all over the world, challenges still exist including difficulties in monitoring combustion-front progress in the field, describing multiscale physical processes, characterizing crude oil kinetics fully, and simulating ISC at field scale. This work predicts combustion front propagation and the effect of thermally induced stress at the scale of an ISC pilot project. Reservoir deformation was characterized by a geomechanical model to investigate the correlation of combustion front progress with reservoir and surface deformation. We upscaled the reaction kinetics directly from combustion tube experiments and calibrated the laboratory-scale model compared with experimental measurements. We then upscaled numerical simulation to a 3D geometry incorporating a geomechanical model. The change in scale is significant as the combustion tube is 6.56 ft (2 m) in length, whereas the dimensions of the 3D model are 1,440 ft by 1,440 ft (439 m) by 1,400 ft (427 m). The elastic properties were defined by Young’s modulus and Poisson’s ratio, whereas the plastic properties were defined by a Mohr-Coulomb model. A sensitivity study examined the reliability of the model, showing the reaction progress and geomechanical responses were not significantly impacted by gridblock dimensions and reservoir heterogeneity. Finally, a field-scale model was developed covering an area of 5,960 ft (1817 m) by 4,200 ft (1280 m). We observed successful ISC simulation including ignition as air injection started. The temperature increased immediately to more than 800°C (1,400°F) based on the chemical kinetics implemented. The temperature history indicated that the combustion front propagated from the injection well into the reservoir with an average velocity of 0.16 ft/D (0.049 m/d). A surface deformation map correlated with the progress of ISC in the subsurface. Land surface uplift because of ISC ranges from 0.1 ft (0.03 m) to several feet, depending on the rock properties and subsurface events. This proof-of-concept model indicated strong potential to detect the surface movement using interferometric synthetic aperture radar (InSAR) and/or tiltmeters to monitor dynamically combustion front positions in subsurface.

You can access this article if you purchase or spend a download.