Hydrodynamic arrangements of most autonomous surface marine vessels belong to conventional displacement-type monohulls or catamarans. Applications of advanced hydrodynamic concepts, such as considered here hydrofoils, can help unmanned marine craft operate efficiently at higher speeds and have better seakeeping. However, dynamics of such boats are rather complex. In this work, a 6-DOF dynamics model with engineering correlations for hydrodynamic forces is applied to simulate motions of an autonomous hydrofoil craft. Collision avoidance maneuvers based on introduction of a dynamic waypoint outside unsafe zone around a moving obstacle have been modeled. The description of planning decisions, implementation of controls, simulated boat trajectories, and time histories of kinematic and controlled variables are presented and discussed. The developed model can be used for design of unmanned hydrofoil craft and control systems of fast autonomous boats.

This content is only available via PDF.
You can access this article if you purchase or spend a download.