Traditional approaches to saturation evaluation in conventional oil and gas reservoirs rely on relationships between resistivity and water saturation. These relationships are challenging to apply in coals due to complexities in their pore systems and gas trapping mechanisms. Therefore, geophysical log-based methods are not commonly employed for saturation evaluation, and core canister desorption measurements are the standard approach for gas content evaluation. Desorption measurements present their own challenge due to the unknown and variable volume of gas lost during core recovery, so an in-situ measurement of gas content is desirable.

Advanced magnetic resonance measurements provide a resistivity-independent saturation evaluation that have been employed in the oil and gas industry for the past approximately fifteen years. However, previous approaches to these types of measurements have focused on the evaluation of conventional reservoirs and hence free gas, oil, and water volumes, and have lacked sensitivity to quantify adsorbed gas, which has a unique magnetic resonance response. A novel magnetic resonance acquisition scheme has been developed that provides sensitivity to both adsorbed and free gas, as well as water, allowing for the complete evaluation of fluid content in coal seams. This measurement has been employed in evaluating coal gas content for coal seam gas evaluation and coal mining optimisation with encouraging results.

You can access this article if you purchase or spend a download.