Multiphase electric submersible pumps (ESPs) are used to produce gas and liquid in wells with high gas content. These pumps are operated at different speeds, and designed to handle flows with various gas volume fractions (GVFs). This study uses gas-liquid dimensionless parameters to obtain and compare the performance of conventional multiphase pumps. Knowledge of such techniques is important for production engineers, field operators and application engineers to ascertain pump performance for given gas-liquid operating conditions.

Gas-liquid performance data for two multiphase pumps with 8.00-inch and 8.62-inch housing diameters were obtained from open literature. The inlet pressure, GVF and rotational speed ranges were 100 to 300 psig, 0 to 0.57, and 3000 to 3600 revolutions per minute (RPM), respectively. The total flow rates varied from 15000 to 60000 barrels per day (BPD). Euler turbomachinery principles for gas-liquid flows were applied to the data to obtain required dimensionless parameters and two-phase dimensionless performance curves for the pumps. The method was tested using dimensionless curves for a given operating condition to obtain pump performance at another operating condition.

The results showed that for each rotational speed, the difference in dimensionless pressure between the multiphase pump discharge and inlet decreased with increasing mass-quality-weighted volume flow rate. For each weighted volume flow rate, the difference in pump discharge and inlet dimensionless pressures decreased with increasing intake GVF. The decrease with increasing intake GVF can range between a factor of 3 and 4, depending on the magnitude of the weighted volume flow rate. Using the 3000 RPM data, a two-phase (gas-liquid) dimensionless performance curve was obtained for one of the multiphase pumps with intake GVF and dimensionless volume flow rate parameter as the independent variables. The curve was used to estimate pump performance at 3600 RPM and then compared with the actual reference test data. For the second multiphase pump, two datasets at different intake pressures were used to obtain the effects of intake pressure. The performance for this multiphase pump was a function of dimensionless volume flow rate, intake GVF and intake gas-liquid density ratio. The maximum error in the estimated performance data was within 7%. Overall, the performance of multiphase pumps can be estimated using the technique in this study for the flow conditions analyzed.

This study highlights the importance of obtaining dimensionless two-phase performance characteristics of multiphase pumps. Given that these pumps are frequently used in oilfield production operations, capability to determine the pressure boosting performance of the pumps, for given operating conditions, is important to field operating personnel and design engineers. This knowledge benefits the operator to optimally produce hydrocarbons from high gas-content wells and maximize the economic bottom line from the field asset.

You can access this article if you purchase or spend a download.