Historically, the air injection literature has stated that the main fuel for the in situ combustion (ISC) process is the carbon-rich, solid-like residue resulting from distillation, oxidation, and thermal cracking of the residual oil near the combustion front, commonly referred to as "coke". At first glance, that assumption may appear sound, since many combustion tube tests reveal a "coke bank" at the point of termination of the combustion front. However, when one examines both the laboratory results from tests conducted on various oils at reservoir conditions, and historical field data from different sources, the conclusion may be different than what has been assumed. For instance, combustion tube tests performed on light oils rarely display any significant sign of coke deposition, which would make them poor candidates for air injection; nevertheless, they have been some of the most successful ISC projects.

It is proposed that the main fuel consumed by the ISC process may not be the solid-like residue, but light hydrocarbon fractions that experience combustion reactions in the gas phase. This vapor fuel forms as a result of oxidative and thermal cracking of the original and oxidized oil fractions. An analysis of different oxidation experiments performed on oil samples ranging from 6.5 to 38.8°API, at reservoir pressures, indicates that this behavior is consistent across this wide density spectrum, even in the absence of coke. While coke will form as a result of the low temperature oxidation of heavy oil fractions, and while thermal cracking of those fractions on the pathway to coke may produce vapor components which may themselves burn, the coke itself is not likely the main fuel for the process, particularly for lighter oils.

This paper presents a new theory regarding the nature and formation of the main fuel utilized by the ISC process. It discusses the fundamental concepts associated with the proposed theory, and it summarizes the experimental laboratory evidence and the field evidence which support the concept. This new theory does still share much common ground with the current understanding of the ISC process, but with a twist. The new insights result from the analysis of laboratory tests performed on lighter oils at reservoir pressures; data which was not available at the time that the original ISC concepts were developed.

This material suggests a complete change to one of the most important paradigms related to the ISC process, which is the nature and source of the fuel. This affects the way we understand the process, but provides a unified and consistent theory, which is important for the modelling efforts and overall development of a technology that has the potential to unlock many reserves from conventional and unconventional reservoirs.

You can access this article if you purchase or spend a download.