Abstract
In recent times the topic of well barrier integrity has become increasingly salient. Within the well completion arena, there have traditionally been two main alternatives for barrier plugs used for packer setting or temporary well abandonment; these are the metallic flapper or ball type isolation plugs. This paper describes the evolution of an innovative glass type barrier plug from its first appearance in the oilfield in 2004, to the deployment of third generation prototype systems into wells in the North Sea today.
Traditional ball or flapper type plug systems need to operate in two states: open and closed. This functionality typically necessitates the use of dynamic seals, which also have to compensate for the pressure differential applied across the plug. Plugs built in this manner can be prone to malfunctions in the dynamic seals and have limitations as to the pressure differentials that can be applied to them when opening. Additionally as the balls or flappers themselves are traditionally manufactured using metallic alloys, in the event that a plug fails to open the only alternative is milling, which if successful, will still leave a restriction in the well limiting options for future well interventions.
Glass barrier plugs have to operate in two slightly different states, solid or shattered. When the plug is run in hole the glass is in a solid state with pressure integrity maintained using static elastomeric seals. Once well operations have progressed to the stage when the plug needs to be opened, a preinstalled trip saver can be activated which would shatter the glass and open well communication. Operating in this manner avoids the use of dynamic seals thereby increasing plug reliability. Other major advantages are that the differential pressure applied across the plug when opening has no effect on the plugs functionality and since the plug is made out of glass, in the event of a trip saver malfunction the plug can be opened using a shoot down tool, a spear, or milled within approximately 10 minutes using a wireline tractor (Welltec, 2011) leaving a full bore ID for future well interventions.
This paper describes how BP Norway and TCO used the lessons learned from two generations of Glass Barrier Plugs (GBPs) to develop a system with increased debris tolerance, improved redundancy and a larger inner diameter.