The field X is a brown heavy oil field producing under strong bottom water drive since the mid-1980. Production is from a combination of Amin aeolian and Al Khlata glacial reservoir sediments. At present, the development is focused on drilling horizontal infill wells. One of the biggest challenges is the unfavorable mobility contrast between the heavy oil and water causing early water breakthrough.

The Amin Formation, the primary reservoir, is characterized by a high net to gross ratio and an average porosity of 30 %. However the initial hydrocarbon saturation at the same porosity often varies by 20 % in different parts of the field. Furthermore, core measurements show an order of magnitude scatter in permeability at the same porosity, indicating the presence of different facies. In early studies these variations were attributed mainly to the grain size variations. A later petrographical study found that the abundance of clays and feldspars could also severely reduce permeability, but may retain high porosity.

In the current Study it was found that the rocks have variable radioactivity due to the presence of radioactive Potassium isotope associated with feldspars. A fare correlation was observed between the grain size and the content of feldspars from core. A novel approach to reservoir characterization integrating core and logs was developed leading to a major breakthrough in the reservoir characterization including:

  • Enhanced permeability prediction using normalized Gamma Ray (GR) log as 3rd parameter;

  • Facies identification using normalized Gamma Ray cut-off;

  • Facies based Saturation-Height models.

This work is a good example of advances in reservoir characterization achieved by integrating core and log data. It results in better understanding of reservoir properties distribution, optimization of completions of new wells and improvement of further development scenarios. In particular, abnormally high gross production and high water cut in the north of the field is currently in line with new facies scheme.

You can access this article if you purchase or spend a download.