Thermal recovery methods have the objective of accelerating hydrocarbon recovery by raising the temperature of the formation and reducing hydrocarbon viscosities. Thermal recovery involves several well-known processes such as steam injection, in situ combustion, steam assisted gravity drainage (SAGD), and a more recent technique that consists of heating the reservoir with electrical energy. The most common thermal method is steam injection. However, some difficulties occurs with steam injection includes; water availability, the cost of water vaporization process, and how to keep steam temperature above the condensation temperature at reservoir conditions. Also it is limited to relatively shallow, thick, permeable, and homogenous sand reservoirs that are located onshore.

In this project three unconventional thermal approaches were developed in laboratory scale to improve the recovery of heavy oil. Those methods are; electrical resistant electrodes, electromagnetic inductors, and microwaves. Designing and experimenting were prepared using low cost material to achieve the success of the new approaches. In the electrical resistance approach, a potential difference was applied between two electrodes; one act as anode and the other one as a cathode. A sufficient heat has been introduced between the electrodes, which improved the oil recovery by adding a maximum of 21% additional recovery to the primary recovery. For the electromagnetic induction, a coil has been wrapped around a core through which the introduced heat was transmitted to the fluid inside and hence increasing the oil recovery by a maximum of 34%. As for the microwave method, microwaves were applied on the core to vibrate water molecules. These microwaves were created and applied by using normal microwave oven, where the waves were transmitted from the source, and reflected inside an isolating body to prevent any wave leakage. The molecules movement resulted in heat generation and thus a reduction in the oil viscosity. The conducted test revealed an increase of 30% in the oil recovery which varies according to the operating power. Finally, economical comparison between the proposed methods was conducted. The three methods were compared by combining recovery and power consumption. Average power consumption per unit production for electromagnetic induction, Electrical Resistance, and microwave were 39, 2570, and 3.775, respectively. The comparison revealed that the Microwave Heating is the most economical choice followed by electromagnetic induction and finally the electrical resistance heating.

You can access this article if you purchase or spend a download.