Abstract
In order to develop the design requirement with current regulatory and contemporary HSE practices, for a typical sour oil/gas production facility, a hypothetical case of about 3 mol % v/v H2S in gas and 300 ppm w/w H2S in oil, of multiphase feed stream, has been studied through the dispersion modeling for the conceptual stage. The findings indicated credible downwind lethal / semi lethal threat distance up to 300 meters. The conclusions of the H2S toxic risk assessment combined with the inherent safe design guidelines have yielded an entirely new set of requirement for the risk reduction. To start with it was realized that safe distance control room should be constructed and facilities should be designed for the remote operation, utilizing the new trends of foundation field bus, electronic marshaling and SIL-3 fiber optic sensors. The facility should be access controlled with mandatory PPE requirement of personal H2S monitors and personal quick donning (5 sec) escape SCABA (15 minutes capacity). The centrifugal compressors should be new generation design of enclosed and hermetically sealed type, levitated with magnetic bearing, without dry gas seals and oil lubrication. The vessels should be ASME Section VIII"lethal service" design and plant piping should be as per fluid category"M" of ASME B31.3 chapter VIII. Furthermore, stress relieving for thicknesses as low as 10 mm, rather than ASME B31.3 code specified >19 mm would be required. Small valves <4" sizes should be of forged steel instead of cast steel. The export oil/gas pipelines and flow lines should be designed for =< 50~60 % of SMYS. Plate instead of Shell and Tube Exchangers. Adequate margins between vessels design and operating pressures to avoid PSV chattering. The PSV’s to have acoustic monitoring. The facilities should be designed free of valve pits and internal corrosion monitoring pits.