Abstract
Historically, shale instability is a challenging issue when drilling reactive formations using water-based muds (WBM). Shale instability leads to shale sloughing, stuck pipe, and shale disintegration causing an increase in fines that affects the rate of penetration. To characterize shale instability, laboratory tests including Linear Swell Meter (LSM), shale-erosion and slake-durability are conducted in industry. These laboratory tests, under different flow conditions, provide shale-fluid interaction parameters which are indicative of shale instability. The composition of WBM is designed to optimize these interaction parameters, so that when used in the field the fluid helps achieve efficient drilling.
This paper demonstrates modeling of shale-fluid interaction parameters obtained from the LSM test. In the standard LSM test, a laterally confined cylindrical shale sample is exposed to WBM at a specific temperature and its axial swelling is measured with time. The swelling reaches a plateau which is characterized by a shale-fluid interaction parameter called % final swelling volume (A). A typical LSM test runs for around 48–72 hours and many tests may be needed to optimize fluid composition.
In this work, a method/model is developed to predict final swelling volume (A) as a function of the Cation exchange capacity (CEC) of the shale and salt concentration in the fluid (prominent factors affecting shale swelling). An empirical model in the form of A = f(CEC)*f(salt) which describes the explicit dependence on the influencing variables is developed and validated for 16 different shale samples at various salt concentrations. This model would significantly reduce LSM laboratory trials saving time and money. It could also enable rig personnel to obtain quick measure of shale characteristics so that WBM composition could be adjusted immediately to avoid shale instability issues.