Abstract
Robustness of measurement while drilling (MWD) and logging while drilling (LWD) tools is laboratory-tested and rigorously field-tested for the expected operating and measurement specifications. Such tools have been used in the industry for decades with proven track record of stability. However, a typical tool string deployed as a part of bottom-hole assembly (BHA) has recently failed to withstand the unexpected BH conditions during drilling of the pilot hole using potassium formate mud (KFM), a heavy water based mud. The failure occurred within a deep-fractured calcareous kerogen section (CKS).
The tools had multiple surface communication failures; the first one was resolved as debris was found obstructing the rotorstarter part before drilling the CKS. The second failure occurred in the back-up tools, after drilling into the CKS and remained unexplained throughout drilling with the expectation of BH data recorded on memory. Inspection of the tool components, once the drilling was completed, revealed two major findings: First, some parts of the BHA, specifically the components of the CuBe tool had "vanished". Secondly, the recovered tool parts had further damage due to corrosion and pitting. In addition, an unexpected color change in metal body parts was observed.
In the paper, the authors explain the unique mystery of tool eating "down-hole ghost". Similar tools were previously used without an issue at comparable high pressure and temperature conditions and in geological sections alike in Kuwait in drilling with oil-based mud. The service provider's operational experience elsewhere has failed to explain the bizarre outcome, as they had not encountered similar incidents of vanishing tool parts and down-hole color change. The claim was that similar tools were successfully operated in water-based mud drilling including KFM. This claim was confirmed prior to the field execution with metallurgical compatibility tests carried out by the mud supplier.