Abstract
This paper discusses the systematic design and development of high performance water-based muds and provides insight into the unique chemistry and inhibition characteristics of various amine inhibitors. Equally important, performance correlations of inhibitive systems in laboratory testing as compared to state-of–the-art inhibitive systems are included.
Invert emulsion drilling fluids have long been effective in drilling reactive shale. Developing high performance (highly inhibitive) water-based drilling fluid that would perform like invert emulsion drilling fluid has long been cited as the ultimate technical goal of the drilling industry. Progressive development of inhibitive water-based drilling fluids based on amine chemistry has made some impact on reaching this goal. Amine-based inhibitive drilling fluids have steadily gained popularity with service and oil companies.
However, these fluids have not always been completely successful in inhibiting the hydration of highly water-sensitive clays. The short-comings are particularly evident when drilling highly complicated and reactive shale formations. Keeping this in mind, an innovative highly inhibitive water-based drilling fluid has been systematically designed with the performance characteristics of oil-based muds.
The newly developed high performance water-based mud (HPWBM) comprises a unique polymeric amine shale intercalator for shale inhibition, an amphoteric polymeric shale encapsulator, a high performance lubricant/anti-accretion agent and a specialized fluid-loss additive. The newly developed HPWBM performed like an oil-based mud in laboratory testing as well as in offset wells using invert emulsion drilling fluids (OBM) due to highly complicated and reactive shale formations.