The enhanced geothermal system (EGS) has a great potential to generate electric power from a rock mass with a relatively low initial permeability in both conventional and superhot/supercritical (> ca. 400°C) geothermal environments. Creating a permeable fracture network is critical for efficient exploitation of geothermal energy from the initially low-permeability rock mass. Our previous works of laboratory-scale hydraulic fracturing experiments on granite at supercritical temperatures of water have demonstrated formation of a dense network of permeable fracture distributed throughout the entire rock body, so called cloud-fracture network. It has been suggested that this fracture network occurs as a result of continuous infiltration of low-viscosity water into preexisting microfractures followed by creation and merger of the subsequent fractures. However, the occurrence of flow-induced microfracturing and its plausible criterion has not been clarified so far. We have therefore conducted a hydraulic fracturing experiment on granite at superhot geothermal conditions, together with acoustic emission measurement, to address these points. Moreover, we have conducted a fracturing experiment on granite at conventional geothermal conditions using CO2 instead of water because it has been suggested that the formation of the cloud-fracture network attributes primary to injection of the low-viscosity fluid (i.e., high-temperature water). Results in both fracturing experiments using water and CO2 have indicated the occurrence of flow-induced microfracturing and have clarified that the well-known Griffith failure criterion largely predicts the fluid pressure required to initiate this fracturing. The present findings will contribute to creating permeable fracture networks in granite for both conventional and superhot EGS.
Skip Nav Destination
Flow-Induced Microfracturing of Granite in Conventional and Superhot Geothermal Environments
Kiyotoshi Sakaguchi;
Kiyotoshi Sakaguchi
Tohoku University
Search for other works by this author on:
Paper presented at the SPWLA 26th Formation Evaluation Symposium of Japan, Virtual, September 2021.
Paper Number:
SPWLA-JFES-2021-K
Published:
September 30 2021
Citation
Goto, Ryota, Pramudyo, Eko, Watanabe, Noriaki, Sakaguchi, Kiyotoshi, Chen, Youqing, and Takeshi Komai. "Flow-Induced Microfracturing of Granite in Conventional and Superhot Geothermal Environments." Paper presented at the SPWLA 26th Formation Evaluation Symposium of Japan, Virtual, September 2021.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Captcha Validation Error. Please try again.
Pay-Per-View Access
$10.00
Advertisement
20
Views
Advertisement
Suggested Reading
Advertisement