Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Format
Subjects
Article Type
Date
Availability
1-2 of 2
Keywords: training data
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Paper presented at the SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference, November 16–18, 2021
Paper Number: URTEC-208406-MS
... detection information missing data queensland detection deviation progressive cavity pump failure artificial intelligence control chart training data pump torque pump failure statistical process control csg well failure date firouzi operation false alarm control level URTEC-208406-MS...
Proceedings Papers
Paper presented at the SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference, November 18–19, 2019
Paper Number: URTEC-198288-MS
... in the Surat Basin, Australia. For the first set of experiments (single well experiments), both the training data and test data are in the same well. The machine learning methods can identify coal pay zones for sections with poor or missing logs. It is found that ROP is the most important feature. The second...