Abstract
Nanotechnology encompasses a wide scope of disciplines and nanomaterials are now being used as commercially viable solutions to technical challenges in industries ranging from electronics to bio-medicine. Recently, the application of nanomaterials to solve problems in oilwell cementing has begun to be investigated by several different research groups in the oil and gas industry. The following uses of nanomaterials have been presented by several independent laboratories as possibilities in the oilwell cementing industry: (1) nanosilica and nanoalumina as potential accelerators; (2) nanomaterials including carbon nanotubes (CNTs) with high aspect ratio to enhance mechanical properties; (3) nanomaterials to reduce permeability/porosity; and (4) nanomaterials to increase thermal and/or electrical conductivity.
In this paper, a review of the aforementioned application concepts is presented with a focus on understanding the role of multiwall CNTs (MWNTs), nanosilica, and nanoalumina in oilwell cement hydration chemistry. The influence of the integration of MWNTs into oilwell cement on the physical properties of cement is discussed. Results from an isothermal microcalorimetric study are presented to help understand the difference between the mode of acceleration of a typical cement accelerator, like CaCl2, compared to nanosilica and/or nanoalumina.