Abstract
Although constant-rate production is assumed in the development of conventional well test analysis methods, constant-pressure production conditions are not uncommon. Conditions under which constant-pressure flow is maintained at a well include production into a constant-pressure separator or pipeline, steam production into a backpressured turbine, or open flow to the atmosphere.
To perform conventional well test analysis on such wells, one common procedure is to flow the well at a constant rate for several days before performing the test. This procedure is not always effective, and often the delay could be avoided by performing transient rate tests instead. Practical methods for transient rate analysis of wells produced at constant pressure are presented in this paper. The most important test is the analysis of the rate response to a step change in producing pressure. This test allows type-curve analysis of the transient rate response without the complication of wellbore storage effects. Reservoir permeability, porosity, and the wellbore skin factor can be determined from the type-curve match. The reservoir limit test is also important. Exponential rate decline can be analyzed to determine the drainage area of a well and the shape factor.
The effect of the pressure drop in the wellbore due to flowing friction is investigated. Constant wellhead-pressure flow causes a variable pressure at the sandface because the pressure drop from flowing friction is dependent on the transient rate. Finally, for testing of new wells, the effect of a limited initial flow rate due to critical flow phenomena is examined.