Abstract
Measuring the rheological properties of crosslinked fracturing fluids is difficult but important. Fluid properties play a key role in the determination of the final geometry of die created fracture and in the distribution of proppant within the fracture; therefore, an accurate knowledge of these parameters is necessary for optimum treatment design. The first paper1 in this series described a method to measure accurately and reproducibly the rheological properties of crosslinked fracturing fluids. The technique is the first that applies long-accepted mathematical methods to correct the measurements for the deviations in shear rate caused by the non-Newtonian nature of the fluids. This, in turn, allows the rigorous examination of mathematical fluid models to determine which, if any, best describes the flow properties of the fluids.